Thema:

Sequence Capture

Auffinden einer Mutation für erblichen Gehörverlust mit Capture Arrays

Erblicher Gehörverlust ist mit einer Häufigkeit von mindestens zwei Fällen auf 1.000 Neugeborene die häufigste sensorische Funktionsstörung beim Menschen. Rund 70% der Erkrankungen sind nicht-syndromisch (NSHL), das heißt, es treten keine zusätzlichen Symptome auf. Zwischen 1% und 5% der NSHL-Fälle sind durch X-chromosomale Mutationen bedingt, die bislang vier NSHL-Genloci (DFNX) zugeordnet werden konnten. Im Zuge einer Familienstudie konnten Hübner et al.1 eine X-chromosomal-dominant vererbte Form des fortschreitenden Hörverlustes der chromosomalen Region Xp22 (DFNX4) zuordnen. 

Mit Hilfe der gezielten Sequenz-Anreicherung durch Hybridisierung genomischer DNA der Mitglieder einer deutschen Familie auf NimbleGen Capture Arrays (Roche NimbleGen Inc., Madison), die die genomische Zielregion repräsentierten, identifizierten Hübner und Kollegen nun eine nonsense-Mutation im Gen für SMPX (small muscle protein, X-linked). Xp22 war bereits zuvor bei einer spanischen Familie als krankheitsrelevant angenommen worden, ohne dass aber eine ursächliche Mutation identifiziert werden konnte. Von Hübner et al. durchgeführte Sequenzanalysen bestätigten nun, dass auch hier eine Nonsense-Mutation in SMPX krankheitsrelevant ist. Weitere Studien ergaben, dass das mechanosensitive, Zytoskelett-assoziierte SMPX-Protein in den Stereocilien der Haarzellen und der Cochlea des Innenohrs von Mäusen exprimiert wird, die zur mechanosensorischen Transduktion beim Hörvorgang beitragen. Das Auftreten von Stopp-Codons in SMPX-Transkripten deutet darauf hin, dass es über einen nonsense-vermittelten mRNA-Abbau zum Funktionsverlust des SMPX-Proteins kommt. Die Forscher vermuten, dass SMPX zur Erhaltung der ständig unter mechanischem Stress stehenden Haarzellen des Innenohrs beiträgt. 

Derzeit sind vier X-chromosomale vererbte Loci (DFNX) kartiert, die mit dem Auftreten des nicht-syndromischen Gehörverlustes (NSHL) in Zusammenhang stehen. DFNX1 ist durch eine fortschreitende Beeinträchtigung des Hörvermögens gekennzeichnet und tritt typischerweise im Alter zwischen 5 und 15 Jahren bei Männern sowie bei Frauen um die 50 auf. Welche Rolle das bei DFNX1 mutierte PRPS1-Gen, das ein Enzym der Nukleotidbiosynthese kodiert, im Innenohr spielt, ist unklar2. Ebenso fanden sich Mutationen3 im Transkriptionsfaktor Pou3F4 bei Patienten mit DFNX2. Hierbei kommen die Kinder bereits mit stark eingeschränktem Hörvermögen (prälingualer Hörverlust) zur Welt, weil die Schallübertragung zwischen Mittel- und Innenohr gestört ist. Hübner et al. untersuchten einen dritten, postlingualen NSHL in einer großen deutschen Familie. Die Krankheit beginnt bei Jungen im Alter von 3 bis 7 Jahren, mit Hördefekten im oberen Frequenzband, schreitet aber progressiv bis zur Taubheit fort. Bei Frauen beginnt der Hörverlust zwischen dem 20. und 30. Lebensjahr und führt nach 10 bis 15 Jahren zu schweren Hörschädigungen, ohne dass zuvor Störungen der Schallweiterleitung aus dem Mittelohr oder eine Beeinträchtigung des Gleichgewichtssinnes zu bemerken wäre.

Genomweite Kopplungsanalyse

Eine genomweite Kopplungsanalyse (Gene Chip Human Mapping 10K Array, Affymetrix) deutete bei 11 der Familienmitglieder mit sehr hoher Wahrscheinlichkeit (LOD-Score 2.23) darauf hin, dass der Defekt sich in einer 17,5 Mb-Region auf dem Chromosomenabschnitt Xp22.12 befindet. Die Berechnung der LOD-Scores erfolgte mit dem Programm ALLE­GRO4 unter der Annahme einer dominanten Vererbung mit vollständiger Penetranz. Die Allelfrequenz der pathogenen Variante wurde auf 0,0001 gesetzt. Die mit MERLIN5 konstruierten Haplotypen für SNP-Marker auf dem Chromosomenabschnitt Xp22.12 engten den Krankheits-Locus auf die Region zwischen rs1482816 und rs1557901 ein.

Identifikation des ursächlichen Gens mit NimbleGen SeqCapArrays

Um die dem Hörverlust zugrundeliegende Genmutation zu identifizieren, wurden alle Exons und je 1KB der Promotoren der 88 proteincodierenden Regionen der Zielregion zweier betroffener Männer sowie bekannte miRNAs mit dem Roche NimbleGen 385K Custom Sequence Capture Array angereichert (Dienstleister: Atlas Biolabs GmbH) und sequenziert (Dienstleister: Cologne Center for Genomics). Der Chip repräsentierte dabei 96,3% der Zielsequenzen des Krankheitslocus. Insgesamt wurden die Targetgensequenzen um den Faktor 280 bzw. 284 angereichert, wie qPCR-Kontrollen ergaben. Nach Elution der hybridisierten Sequenzen vom Array und Amplifikation wurden diese sequenziert (Illumina GA IIx) und lieferten 2,8286 Gb bzw. 2,6060 Gb Rohsequenz. Die Reads wurden mit der MAQ short read-Alignment-Software5 gegen das humane Referenzgenom (Version hg19) kartiert. Einzelbasen-Variationen (SNPs) wurden mittels MAQ, Indels mittels dem BWA-Aligner6 und SAM-Tool7 analysiert. Auf diese Weise identifizierten Hübner und Kollegen 3.858 bzw. 3.443 X-chromosomale Varianten in den beiden Personen. 

Zugleich wurden DNA-Proben weiterer betroffener Männer dieser Familie hinsichtlich hochpolymorpher Mikrosatelliten-Marker genotypisiert. Die Kopplungsregion konnte so auf eine 8,5 Mb-Region eingeengt werden, die nur noch 398 bzw. 347 single nucleotide-Varianten (SNVs) enthielt. 

Diese wurden hinsichtlich ihrer evolutionären Konserviertheit und ihrer Auswirkungen auf die Proteinbiosynthese weiter analysiert. Nach Sanger-Sequenzierung des aussichtsreichsten Kandidaten – einer nonsense-Mutation des small muscle protein, X-linked (SMPX) – zeigte sich, dass das Sequenzintervall den DFNX4-Locus enthielt. 

Dieser X-chromosomale Locus war 1996 bereits von Forschungspartnern von Hübner et al. in einer spanischen Familie kartiert worden8 und steht in Zusammenhang mit dem Auftreten eines fortschreitenden, postlingualen Hörverlust. Bei Männern tritt die Erkrankung allerdings erst zwischen dem 5. und 7. Lebensjahr, bei Frauen erst im vierten Lebensjahrzehnt auf. Die retrospektive Analyse von SMPX in dieser Familie lieferte gleichfalls eine nonsense-Mutation (c175 G>T) in der proteinkodierenden Sequenz. Ebenso wie die in der deutschen Familie identifizierte Mutation (c.109G>T) scheint diese über vorzeitige Stopp-Codons einen mRNA-Abbau und damit Funktionsausfall des SMPX-Proteins zu verursachen. Gestützt wird diese Hypothese durch zwei weitere, unabhängige Familienstudien9, die ebenfalls zeitgleich zeigen, dass SMPX das mutierte Gen bei der DFNX4-vermittelten Taubheit ist.

Immunlokalisation von SMPX

Immunlokalisationsstudien mit SMPX-Antikörpern ergaben, dass SMPX in verschiedenen Zellen des Innenohrs von Mäusen exprimiert wird (vgl. Hintergrund): Neben der Expression in nichtsensorischen Zellen wie Deiters- (DC), Böttcher- (BC) oder Pillar-Zellen (PC) zeigte sich auch eine schwache Expression in Haarzellen (iHC, oHC). Hübner et al. vermuten, dass SMPX zur Erhaltung der mechano-sensitiven Stereocilien auf den sensorischen Haarzellen der Cochlea erforderlich ist. 

Sie sehen gewisse Parallelen zur Funktion von SMPX in Muskelgewebe des Menschen10-12. Dort ist das 88 Aminsäuren-Protein in sogenannten Costameren lokalisiert – mechano-sensitiven Proteinkomplexen die die Sarcolemmamembran vor Schäden durch mechanischen Stress bei der Muskelkontraktion schützen. 

[1] Huebner AK, Gandia M, Frommolt P, Maak A, Wicklein EM, Thiele H, Altmüller J, Wagner F, Viñuela A, Aguirre LA, Moreno F, Maier H, Rau I, Giesselmann S, Nürnberg G, Gal A, Nürnberg P, Hübner CA, del Castillo I, Kurth I. (2011): Nonsense mutations in SMPX, encoding a protein responsive to physical force, result in X-chromosomal hearing loss. Am J Hum Genet. 88(5):621-7

[2] Liu X, Han D, Li J, Han B, Ouyang X, Cheng J, Li X, Jin Z, Wang Y, Bitner-Glindzicz M, Kong X, Xu H, Kantardzhieva A, Eavey RD, Seidman CE, Seidman JG, Du LL, Chen ZY,
Dai P, Teng M, Yan D, Yuan H. (2010): Loss-of-function mutations in the PRPS1 gene cause a type of nonsyndromic X-linked sensorineural deafness, DFN2. Am J Hum Genet. 86(1):65-71.

[3] De Brouwer AP, van Bokhoven H, Nabuurs SB, Arts WF, Christodoulou J, Duley J. (2010): PRPS1 mutations: four distinct syndromes and potential treatment. Am J Hum Genet. 86(4):506-18. Review.

[4] Gudbjartsson DF, Jonasson K, Frigge ML, Kong A. (2000): Allegro, a new computer
program for multipoint linkage analysis. Nat Genet. 25(1):12-3.

[5] Li, H., Ruan, J., and Durbin, R. (2008). Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858.

[6] Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. 

[7] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079.

[8] Del Castillo I, Villamar M, Sarduy M, Romero L, Herraiz C, Hernández FJ, Rodríguez M, Borrás I, Montero A, Bellón J, Tapia MC, Moreno F. (1996): A novel locus for non-syndromic sensorineural deafness (DFN6) maps to chromosome Xp22. Hum Mol Genet. 5(9):1383-7.

[9] Schraders M, Haas SA, Weegerink NJ, Oostrik J, Hu H, Hoefsloot LH, Kannan S, Huygen PL, Pennings RJ, Admiraal RJ, Kalscheuer VM, Kunst HP, Kremer H. (2011): Next-generation sequencing identifies mutations of SMPX, which encodes the small muscle protein, X-linked, as a cause of progressive hearing impairment. Am J Hum Genet. 88(5):628-34. 

[10] Patzak D, Zhuchenko O, Lee CC, Wehnert M. (1999): Identification, mapping, and genomic structure of a novel X-chromosomal human gene (SMPX) encoding a small muscular protein. Hum Genet. (5):506-12.

[11] Kemp TJ, Sadusky TJ, Simon M, Brown R, Eastwood M, Sassoon DA, Coulton GR. (2001): Identification of a novel stretch-responsive skeletal muscle gene (Smpx). Genomics. 72(3):260-71

[12] Geiger B, Bershadsky A. (2002): Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell. 2002 Jul 26;110(2):139-42. Review.

Mehr zum Spezial

Magazin zum Thema


Heft 1/2012

© 2007-2017 BIOCOM

http://www.laborwelt.de/spezialthemen/dna-enrichment/mit-capture-arrays-mutationen-finden.html

Alle Themen

SpezialThemen

Produkt der Woche

Alle Produkte

Kalender

Alle Events

Partner-Events

Glasgow (UK)

DIA BioVenture Day

Istanbul (TR)

expomed eurasia